Chapter VII: Air Quality and Conformity Determination

A. Introduction

Air Quality, as it pertains to the operations of the Syracuse Metropolitan Transportation Council (SMTC) and its member agencies, includes the state and federal requirements for transportation conformity, project level analysis for Congestion Mitigation/Air Quality (CMAQ) funding, and requirements for the State Energy Plan (SEP) and Greenhouse Gas analysis.

The SMTC and its member agencies take a multi-faceted approach to improving and monitoring air quality impacts within the SMTC planning area. Improvements in traffic monitoring technology or engine development, such as diesel-electric hybrids transit fleets and Light Emitting Diodes (LED’s) in traffic signals, can result in reduced emissions of pollutants and energy savings. Planning studies of long range transportation issues generally examine the impacts of improvements on the region’s air quality. Each project proposed for use of CMAQ funds requires an analysis of the air quality impacts of that particular project. This chapter will examine the three main areas under which the SMTC attends to air quality: conformity, CMAQ and Energy/Greenhouse gases.

B. Conformity

Transportation conformity ("conformity") is a way to ensure that Federal funding and approval is applied to those transportation activities that are consistent with air quality goals. Conformity applies to transportation plans, such as the SMTC Long Range Transportation Plan (LRTP), Transportation Improvement Programs (TIP), and projects funded or approved by the Federal Highway Administration (FHWA) or the Federal Transit Administration (FTA) in areas that do not meet or previously have not met air quality standards for ozone, carbon monoxide, particulate matter, or nitrogen dioxide. These areas are known as "non-attainment areas" or "maintenance areas," respectively.

Transportation projects must demonstrate conformity in order to be funded. A conformity determination demonstrates that the total emissions projected for a plan or program are within the emissions limits ("budgets") established by the State Implementation Plan (SIP), and that transportation control measures (TCMs) are implemented in a timely fashion. TCMs are specific programs designed to reduce emissions from transportation sources by reducing vehicle use, changing traffic flow or congestion conditions. Examples include programs for improving public transit, developing high occupancy vehicle (HOV) facilities, and ordinances to promote non-motor vehicle travel.

The SMTC LRTP is a blueprint that guides investment in the surface transportation system in our metropolitan area, and is therefore required to be in conformity with the regional air quality plan or SIP. This is due to Onondaga County being designated a “maintenance” area for Carbon Monoxide (CO).
The SIP places limits on emissions of each pollutant for each source type (mobile, stationary and area sources). Projected emissions from highway and transit usage must be less than or equal to the emissions limits for on-road mobile vehicles that are established by the SIP. These emissions limits for motor vehicle emissions sources are called “budgets”.

Budgets are developed as part of the air quality planning process by the New York State Department of Environmental Conservation (NYSDEC) and approved by the Environmental Protection Agency (EPA). The FHWA, FTA, and the New York State Department of Transportation Environmental Analysis Bureau (NYSDOT EAB) participate with NYSDEC and EPA as members of the Interagency Consultation Group (ICG) that approves the budgets.

1. Non-Attainment Background

The SMTC metropolitan planning area (MPA) consists of all of Onondaga County and small portions of Madison and Oswego Counties. In the late 1970s, a CO monitor was placed in downtown Syracuse by the NYSDEC. The location of the monitor, at the intersection of East Adams Street and Almond Street, indicated that there were CO concentrations in excess of the EPA standards. Subsequently, parts of Syracuse were designated non-attainment for CO. In 1990 the Clean Air Act was amended to include a CO non-attainment classification scheme, which included a classification for low to moderate non-attainment. At that time, the non-attainment classification was expanded by NYSDEC to include all of Onondaga County. In 1992, the SMTC non-attainment area was re-designated to attainment of the CO National Ambient Air Quality Standards (NAAQS). As part of the re-designation process a maintenance plan was developed for 1993 through 2003.

Under Section 175A of the Clean Air Act of 1990, the individual states are required to provide for the maintenance of the NAAQS once an area is re-designated to attainment. The maintenance plan includes an attainment inventory, demonstration of continued attainment, and budgets for years leading to the end of this plan, (in 2013). A 1990 base year is included for comparison for emission reductions as provided by the conformity regulation. The emission budgets are also provided by the transportation conformity regulation. The SMTC created a new travel demand model with 2003 as the base year and 2027 as the horizon year to more accurately reflect trends.

The first Maintenance Plan expired in September 2003, and the NYSDEC released a new 10-year Maintenance Plan in December 2003, and subsequently revised it in February 2004. The conformity analysis performed by the SMTC, in cooperation with the NYSDOT EAB, indicates that the SMTC area will continue to attain emission levels in conformance with requirements. As indicated previously, the conformity test for the SMTC maintenance area must demonstrate that, once a project is built, the emissions impacts of a proposed project will: 1.) be less than the emissions in the SMTC base year (2003); 2.) will remain below budgets established for selected future years as determined by the Onondaga SIP and the Interagency Consultation Group (specifically 2009, and 2013), and 3.) that TCMs are being implemented in a timely manner. All of the SMTC TCMs have been implemented and no new TCMs have been included in the
Onondaga County SIP. The conformity analysis for this LRTP 2007 Update shows that SMTC is well below the 2003 standards, as well as below for all future years analyzed.

The SIP and the conformity determination, while integrated, both have separate time frames as far as each year is examined. The SIP addresses the time frame up to the end of the maintenance period in 2013, while conformity must look out at least 20 years, which is 2027 for this LRTP 2007 Update.

As the SMTC LRTP is a policy or “visioning” document, it does not contain specific projects. The projects included in the TIP, all of which are consistent with the goals and objectives of the original LRTP and subsequent updates are considered to be the project list for the LRTP. The policies contained in this LRTP 2007 Update support the intentions of the Clean Air Act Amendments (CAAA) in maintaining the NAAQS. The LRTP goals, directives, recommendations and policies are in conformance with the SIP requirements.

2. Generation of Vehicle Miles Traveled and Average Speed Forecasts

The SMTC uses TransCAD as its travel demand-modeling platform.

The data forecasts used in the model are derived from several sources. Current population estimates were obtained via the 2000 census and estimates were calculated for 2003 (base year), along with future population estimates for the horizon year (2027) being forecasted by a working group of local professionals with experience in demographic analysis. This working group included the Syracuse-Onondaga County Planning Agency (SOCPA), New York State Department of Transportation (NYSDOT), SMTC, and others.

Land use data in the model (e.g., type of employers and number of employees) was similarly calculated for both the base and future scenarios utilizing the above-mentioned working group with the addition of key economic development agencies and personnel, and local officials. Some of the key additions to the working group included the Director of the Onondaga County Industrial Development Agency and the CNYRPDB's Director of Economic Development.

Travel data for transit was included in the modeling, taking into account Central New York Regional Transportation Authority (CNYRTA) fixed route service. CNYRTA’s paratransit service (Call-a-Bus) is treated as shared ride trips. Additionally, bicycling and walking trips were also quantified via some system wide adjustments.

3. Projects Included in the Analysis

The conformity rules have designated several categories of projects that, by their nature, will not affect regional emissions. These projects are categorized as “exempt”. Highway and transit projects of the types noted below are exempt from the requirement to determine conformity. Such projects may proceed toward implementation even in the absence of a conforming transportation plan and TIP. However, a particular action of the type listed below is not exempt
if the MPO, in consultation with the ICG, concurs that it has regionally significant emissions impacts.

The following list of exempt projects is derived from “Table 2 - Exempt Projects” in 40 CFR Part 93.126, 6 NYCRR Part 240.27 and “Table 3 – Projects Exempt from Regional Emissions Analysis” in 40 CFR Part 93.127.

- **Safety**
 1. Railroad/highway crossing
 2. Hazard elimination program
 3. Safer non-Federal-aid system roads
 4. Shoulder improvements
 5. Increasing sight distance
 6. Safety improvement program
 7. Traffic control devices and operating assistance other than signalization projects (i.e. Intelligent Transportation Systems (ITS) maintenance and ITS operations)
 8. Railroad/highway crossing warning devices
 9. Guiderails, median barriers, crash cushions
 10. Pavement resurfacing and/or rehabilitation
 11. Pavement marking demonstration
 12. Emergency relief (23 U.S.C. 125)
 13. Fencing
 14. Skid treatments
 15. Safety roadside rest areas
 16. Adding medians
 17. Truck climbing lanes outside the urbanized area
 18. Lighting improvements
 19. Widening narrow pavements or reconstructing bridges (no additional travel lanes)
 20. Emergency truck pullovers
Mass Transit
1. Operating assistance to transit agencies (or entities that provide transit service)
2. Purchase of support vehicles
3. Rehabilitation of transit vehicles
4. Purchase of office, shop, and operating equipment for existing facilities
5. Purchase of operating equipment for vehicles (i.e.: radios, fare boxes, lifts, etc.)
6. Construction or renovation of power, signal, and communications systems
7. Construction of small passenger shelters and information kiosks
8. Reconstruction or renovation of transit buildings and structures (i.e.: rail or bus buildings, storage and maintenance facilities, stations, terminals, and ancillary structures)
9. Rehabilitation or reconstruction of track structures, track, and trackbed in existing rights-of-way
10. Purchase of new buses and rail cars to replace existing vehicles or for minor expansions of the fleet

Air Quality and Other
1. Continuation of ride-sharing and van-pooling promotion activities at current levels
2. Bicycle and pedestrian facilities
3. Planning and technical studies that do not proceed to construction
4. Grants for training and research programs
5. Planning activities conducted pursuant to titles 23 and 49 U.S.C.
6. Federal-aid systems revisions
7. Engineering to assess social, economic, and environmental effects of the proposed action or alternatives to that action
8. Noise attenuation
9. Advance land acquisitions (23 CFR 712 or 23 CFR 771)
10. Acquisition of scenic easements
11. Plantings, landscaping, etc.
13. Directional and informational signs (i.e. ITS maintenance and ITS operations)
14. Transportation enhancement activities (except rehabilitation and operation of historic transportation buildings, structures, or facilities)
15. Repair of damage caused by natural disasters, civil unrest, or terrorist acts, except projects involving substantial functional, locational or capacity changes.

➢ “Hot-Spot” Project-Level Conformity Analysis

1. Intersection channelization projects
2. Intersection signalization projects at individual intersections
3. Interchange reconfiguration projects
4. Changes in vertical and horizontal alignment
5. Truck size and weight inspection stations
6. Bus terminals and transfer points

The Part 93.127 project types (“Hot-Spot” Project-Level Conformity Analysis) are not required to be included in the regional emission analysis, but the local effects of these projects with respect to CO concentrations must be considered to determine if a hot-spot analysis is warranted prior to making a project-level conformity determination.

Projects which are expected to affect the distance, speed or capacity of a roadway, and do not fall under any of the above noted classifications, are categorized as “non-exempt” and must undergo a conformity analysis. All of the non-exempt projects included in the 2007-2012 TIP that could be modeled did undergo a conformity determination analysis for the 2027 scenario and are included in Table 7-1.

Table 7-1

<table>
<thead>
<tr>
<th>PIN</th>
<th>Project</th>
<th>General Scope</th>
<th>TCM?</th>
</tr>
</thead>
<tbody>
<tr>
<td>375285</td>
<td>Geddes/Genesee Sts Signal Interconnection</td>
<td>Upgrading of signals and inclusion in existing interconnect system.</td>
<td>No</td>
</tr>
<tr>
<td>375272</td>
<td>Lodi St/North Salina St. Signal Improvements</td>
<td>Upgrading of signals and inclusion in existing interconnect system.</td>
<td>No</td>
</tr>
<tr>
<td>375479</td>
<td>N,S,E,W Interconnect Expansion</td>
<td>Upgrading of signals and inclusion in existing interconnect system.</td>
<td>No</td>
</tr>
</tbody>
</table>

Source: SMTC, 2007-2012 TIP. “PIN” stands for project identification number; “TCM” indicates whether or not the project is a Transportation Control Measure.
4. Emissions Modeling

The 2007 emissions analysis was based upon the latest emission factors available for Onondaga County. The results of the analysis include an estimate of the total daily CO emissions from mobile sources (cars, buses, trucks) in Onondaga County. This emissions analysis is based on calculations for a winter day with vehicle, traffic and weather conditions that are the most conducive to carbon monoxide production. The above analysis includes measures from the emission control program. Specific examples include the gas cap integrity check, anti-tampering program, an on-board diagnostics system check, and the California Low Emission Vehicle II Program (CAL LEV II).

5. Results of the Emissions Modeling

The modeling output shows that CO emissions between the base year of 2003 and the forecast year of 2027 will be significantly reduced. The analysis indicates that with the completion of construction or implementation of the projects on the TIP, the area will still result in emission levels that are lower than the 2003 base year.

In addition to the required emissions level conformity test, the SMTC staff and the NYSDOT analyzed several milestone years between the 2003 base year and the 2027 Plan year. The results of these analyses demonstrate the gradual reductions in CO emissions over time for the milestone years. These are shown in Table 7-2.

<table>
<thead>
<tr>
<th>Year</th>
<th>2003</th>
<th>2009</th>
<th>2013</th>
<th>2020</th>
<th>2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget</td>
<td>N/A</td>
<td>372</td>
<td>357</td>
<td>357</td>
<td>357</td>
</tr>
<tr>
<td>Emissions Analysis</td>
<td>409.99</td>
<td>198.20</td>
<td>162.85</td>
<td>146.15</td>
<td>153.55</td>
</tr>
</tbody>
</table>

Source: SMTC

6. Timely Implementation of Transportation Control Measures (TCMs)

All of the TCMs from the previous Maintenance Plan have been implemented. No new TCMs have been identified in the Maintenance Plan for the years 2003-2013. The previous TCMs from the 1999-2004 TIP are shown for informational purposes in Table 7-3.

7. Transit Impacts on Conformity

The Transportation Conformity Rule (40 CFR Part 93), issued by the USEPA, requires that the conformity determination for each Plan and TIP must discuss how transit operating policies (including fares and service levels) and assumed ridership have changed since the previous
conformity determination (93.110(c)). In addition, the conformity determination must include reasonable assumptions about transit service and increases in transit fares and road and bridge tolls over time (93.110 (d)).

The CNYRTA has not had a fare increase since 1995. According to the CNYRTA, there would be no fare increase in the foreseeable future as fares are raised only as a last resort. The same applies to service levels. The CNYRTA reduced service in 1995, however in November 2002, service was added as part of a major restructuring of bus lines and service hours. As a result of the route restructuring, CNYRTA’s ridership is up approximately 4% overall. Finally, CNYRTA will continue to pursue the service concepts proposed in the ReMAP Study completed in 1999 to the extent possible, given adequate funding. These concepts include small bus community circulators in suburban settings, express services between downtown and outlying locations and the development of key hubs. There has been limited success to date with some of those service concepts. Two new bus routes were added; one is doing moderately well, while the other was cancelled due to lack of sufficient ridership.

Table 7-3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>303519</td>
<td>RT 57, phase IV, Gaskin to RT 31</td>
<td>Construction 11/96</td>
<td></td>
<td>Implemented</td>
</tr>
<tr>
<td>310412</td>
<td>RT 635, RT 5 to RT 298</td>
<td>Construction 11/94</td>
<td>Construction 6/98</td>
<td>Implemented</td>
</tr>
<tr>
<td>310413</td>
<td>RT 298, Syracuse to Carrier Circle</td>
<td>Construction 11/98</td>
<td>Construction 4/02</td>
<td>Implemented</td>
</tr>
<tr>
<td>375206</td>
<td>Harrison Street Traffic Signal</td>
<td>Construction 9/95</td>
<td></td>
<td>Implemented</td>
</tr>
<tr>
<td>375207</td>
<td>Buckley Road Improvements at Bear Road</td>
<td>Construction 11/95</td>
<td></td>
<td>Implemented</td>
</tr>
<tr>
<td>380272</td>
<td>Oncenter Signs</td>
<td>Construction 1/94</td>
<td></td>
<td>Implemented</td>
</tr>
<tr>
<td>380275</td>
<td>Downtown Syracuse Signal Interconnect System</td>
<td>Engineering 11/96</td>
<td>Construction 7/96</td>
<td>Implemented</td>
</tr>
<tr>
<td>380307</td>
<td>Connections Ride Sharing Program</td>
<td></td>
<td></td>
<td>Implemented</td>
</tr>
<tr>
<td>380312</td>
<td>AVL System</td>
<td>Construction 10/96</td>
<td></td>
<td>Implemented</td>
</tr>
<tr>
<td>382074</td>
<td>Fare Collection System</td>
<td>Construction 10/96</td>
<td></td>
<td>Implemented</td>
</tr>
<tr>
<td>382089</td>
<td>Shelter Schedule Panels</td>
<td>Construction 10/94</td>
<td></td>
<td>Implemented</td>
</tr>
</tbody>
</table>

Source: Syracuse Metropolitan Transportation Council, 1999-2004 Transportation Improvement Program.
8. Summary

Since the regional implementation program of transportation projects, as reflected in the TIP and derived from the goals and objectives of the LRTP, have been shown to meet the required emission reduction test for air quality conformity, and there are no applicable TCMs in the current SIP for the Onondaga County area, the LRTP 2007 Update has been shown to be consistent with applicable conformity regulations and the SIP. No goals, directives, recommendations or projects of the LRTP will contradict requirements or commitments of the SIP or the intent of the CAAA or other applicable federal and state guidance.

The conformity analysis prepared by the SMTC, with the support of NYSDOT EAB, may be found in Appendix D.

C. Congestion Mitigation/Air Quality Program

The CMAQ program was established under the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 as a funding source for transportation projects and programs that help support the goals of the 1990 CAAA of 1990. The program was reauthorized under TEA 21 and the latest transportation legislation, the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU). The main goal of the CMAQ Program is to fund transportation projects that reduce emissions in non-attainment and maintenance areas. In the context of total available federal transportation funding, CMAQ makes a small but targeted contribution toward addressing air quality issues.

Congestion mitigation is also a goal of the CMAQ Program. Congestion relief can contribute to improvements in air quality by reducing travel delays, engine idle time and unproductive fuel consumption. Over the past twenty-five years, vehicle miles traveled (VMT) have more than doubled, while lane miles have increased slightly. As VMT increases there is greater opportunity for congestion and increased emissions.

All sponsors in the Syracuse metropolitan region requesting CMAQ funds must provide an air quality analysis for review and approval by the SMTC and NYSDOT EAB. CMAQ projects funded by the SMTC in the 2007-2012 fiscal year time frame include:

- Geddes/Genesee Signal Interconnect (signal upgrades and linking to signal interconnect system);
- Lodi/North Salina Street Signal Improvement (signal upgrades and linking to signal interconnect system);
- N, S, E, W Signal Interconnect Expansion;
- Replace CNG Transit Buses with Hybrids (CNG fleet replacement project with modern technology (diesel-electric hybrids));
- New York State Department of Transportation Freeway Incident Management System Phase 5 and 6; and
- New York State Thruway Authority ITS Implementation Project.

According to the CMAQ analysis, the combined first year benefit of these projects is roughly 116 tons/year in CO emissions and is shown in Table 7-4.

Table 7-4

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Project</th>
<th>Anticipated Year Complete</th>
<th>Tons/Year Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Syracuse</td>
<td>Geddes/Genesee Signal Interconnect</td>
<td>2010</td>
<td>3.81</td>
</tr>
<tr>
<td>City of Syracuse</td>
<td>Lodi/North Salina Signal Improvement</td>
<td>2010</td>
<td>1.85</td>
</tr>
<tr>
<td>City of Syracuse</td>
<td>N, S, E, W Signal Interconnect Expansion</td>
<td>2011</td>
<td>12.76</td>
</tr>
<tr>
<td>NYSDOT</td>
<td>Freeway Incident Management System Ph. 5-6</td>
<td>2009/10</td>
<td>37.0</td>
</tr>
<tr>
<td>NYSTA</td>
<td>Thruway ITS Implementation</td>
<td>2009</td>
<td>2.0</td>
</tr>
<tr>
<td>Centro</td>
<td>Replace NOVA CNG buses with Hybrids</td>
<td>2009</td>
<td>11.08</td>
</tr>
<tr>
<td>Centro</td>
<td>Replace Orion V CNG buses with Hybrids</td>
<td>2011</td>
<td>48.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>116.50</td>
</tr>
</tbody>
</table>

This table was created from information derived from the SMTC’s 2007 – 2012 TIP and various individual CMAQ analyses calculated by the SMTC for various projects.

Once CMAQ projects have been completed, a “before and after” study is necessary (according to federal requirements) to confirm the benefits predicted by the project sponsors. To ensure continued emissions benefits from a project, the EAB and SMTC require that the scope be reviewed and an analysis completed for each year that funds are requested.

D. Energy and Greenhouse Gas Impacts

1. **Introduction**

A policy objective of both the U.S. Department of Transportation and the State of New York is the conservation of energy through a reduction in motor fuel consumption. In addition, the New York State Energy Plan (SEP) has identified a reduction of greenhouse gases (CO₂) as an objective for all LRTPs.

Similar to the documentation relating to air quality emissions above, the SMTC performed a quantitative analysis on both energy consumption and carbon dioxide emissions that may result from the implementation of the 2007 LRTP. This analysis, included to promote the policy objectives of federal and state transportation departments, is intended to focus awareness on these issues.
2. **State Energy Plan**

The 2002 SEP laid the foundation for many of the State’s transportation policies with regard to energy-efficient travel. The SEP is coordinated with the statewide Master Transportation Plan prepared by the NYSDOT and the SIP for air quality prepared by the NYSDEC.

“The SEP achieves a true integration of transportation issues with energy, environmental and economic development issues. It contains several recommendations and goals that affect the transportation sector and how we do business. Among the more significant recommendations and goals are:

- Reducing energy use across all sectors and all fuels by 25 percent by 2010 from 1990 levels;
- Reducing greenhouse gas emissions across all sectors and all fuels by 5 percent by 2010 and 10 percent by 2020 from 1990 levels;
- Including greenhouse gas, air quality and energy production (and mitigation, as appropriate) in the development of transportation plans, programs and projects at a metropolitan and statewide level;
- Redirecting transportation funding to energy efficient transportation alternatives;
- Targeting open space funding to prevent suburban sprawl, reduce vehicle miles traveled, and reduce energy use and pollutant emissions; and
- Supporting, adopting and enhancing various emission control strategies.”

The statewide Master Transportation Plan emphasizes maintaining transit infrastructure and providing operating improvements that will continue to improve the energy efficiency of travel in New York. The significant continuing investment in Intelligent Transportation Systems (ITS) statewide is also expected to have a positive effect on future energy use.

The policies and objectives set forth in the SEP provide many areas where efforts to improve the efficiency of the transportation system are aligning with these new travel trends, such as the statewide ITS program, passenger rail and bus infrastructure upgrades, transit enhancements, promotion of new pedestrian and bicycle facilities and intermodal freight access improvements.

Energy use in the transportation sector is derived from the amount of travel, expressed as VMT, and fuel economy, expressed as miles per gallon (MPG). Increasing energy efficiency in the transportation sector can be accomplished by reducing VMT, increasing the fuel economy of the vehicles used for travel, or by reducing congestion and vehicle delays. Reducing VMT can be achieved in a number of ways, from an absolute reduction in travel to increasing the occupancy of

1 Memorandum from Michael Fleischer, First Deputy Commissioner to Executive Staff, Assistant Commissioners and Regional Directors, September 23, 2002.
each vehicle to move the same or more travelers in fewer vehicles (e.g., shifting from single-occupant vehicles (SOVs) to HOVs, which include carpools, vanpools, and transit vehicles).

The primary methods used to reduce congestion and its impacts are decreasing Vehicle Hours of Delay (VHD) and total VMT. Every action undertaken by the State or local transportation agencies to mitigate the growth of congestion attempts to accomplish one or both of these objectives. These actions by nature are multimodal; covering highway construction and operating projects, transit capital projects and operating policies (e.g., fare incentives), and motor carrier and rail freight services.

3. SMTC Initiatives & the New York State Energy Plan

The SMTC and its member agencies fully support the efforts and goals of the New York State Energy Plan and there are several examples indicative of this support. The NYSDOT, the Onondaga County Department of Transportation (OCDOT) and the City of Syracuse have upgraded a number of their traffic signals to use LEDs, which save energy and are longer lasting than standard bulbs. The NYSDOT and the CNYRTA maintain CNG fueling stations and both agencies are increasing their fleets of CNG vehicles, with the CNYRTA beginning to replace the CNG fleet with diesel-electric hybrids, which further reduce energy, greenhouse gases and CO emissions. In addition, the City of Syracuse has an established CNG fueling facility maintained by the Department of Public Works that services not only the growing City fleet of alternative fueled vehicles, but also provides services for other agencies and municipalities.

Previous UPWP studies have included ridesharing programs, emergency energy contingency plan development, staggered work hours feasibility, and several traffic improvement studies that have had direct input into the TIP development. In particular, extensive work has been completed on the coordination and optimization of traffic lights in the City of Syracuse.

In addition, the SMTC has funded through its TIP process in the past an Environmental Technology Degree program to support the Alternative Fuels Technology Center at Onondaga Community College, as well as an expanding fleet of CNG and clean-fueled buses for the transit authority. The SMTC is also a stakeholder in the Clean Communities of Central New York program.

The CNYRTA envisions that by 2011 their fleet would consist of Diesel-Electric Hybrids allowing the retirement of the existing diesel fleet and the operation of clean-fueled buses.
throughout their regional system (where currently CNG buses cannot operate). The support of the CNYRTA’s efforts by the SMTC will allow the replacement of both diesel and CNG with an even cleaner, more energy efficient transit fleet. The Hybrid buses get improved mileage as well as significantly reduce emissions.

4. Private Sector Initiatives

In Central New York the private sector has also been active in initiatives that support the goals of the State Energy Plan. CSX Transportation has been retrofitting its fleet of diesel engines with an auxiliary power unit (APU) generator, which allows the railroad to reduce idling thereby saving fuel, energy and substantially reducing emissions from railroad sources. The APU provides for power during idling and shuts down the main locomotive engine. According to the CSX Transportation Mechanical Department and the EPA, during idling the APU provides for the following reductions in emissions:

- 85% reduction in Carbon Dioxide (CO₂)
- 91% reduction in Nitrous Oxides (NOₓ)
- 94% reduction in Hydrocarbons (HC)
- 96% reduction in Carbon Monoxide (CO)
- 84% reduction in Particulate Matter (PM)

Improvements by short line railroads in the region have also contributed to conversion an increasing amount of freight traffic being converted from truck to rail thereby reducing number of truck trips and reducing congestion while saving energy and reducing emissions.

In addition to the above noted endeavors by the SMTC and its member agencies, the state energy plan requires an analysis of energy consumption and greenhouse gas for TIPs and Plans. The process and results of that analysis are described below.

5. 2027 Long Range Plan 2007 Update Energy Analysis

The LRTP 2007 Update is the second document that requires both an analysis of energy usage and an analysis of greenhouse gas emissions; the first being the LRTP 2004 Update. The NYSDOT EAB provided guidance on the approach to this process. These guidance documents are as follows:

- *Air Quality Analysis of Transportation Improvement Programs, Regional Transportation Plans, and Capitol Project programs – Technical Guidance to Assist Metropolitan Planning Organizations and Department of Transportation Regional Offices Meet the Objectives of the 2002 New York SEP* (January 21, 2003);

- *Development of Revised NYSDOT Energy Analysis Guidelines (Draft), Subtask 12a: Energy Analysis Guidelines for TIPs and Plans* (June 21, 2002); and

- *Development of Revised NYSDOT Energy Analysis Guidelines (Draft), Subtask 12b:

To comply with/adhere to this guidance, the SMTC staff worked through a nine-step process that included:

1. Projects were reviewed based on guidance provided in 6 NYCRR Part 240.6 (h) (2) for their significance in affecting energy consumption and the appropriate projects were identified as non-exempt projects.

2. Travel Demand Modeling was completed to determine the impact of future projects in the Syracuse MPA. The analysis scenarios included a year 2027 No-Build and a year 2027 Build (2027 is the horizon year of the SMTC LRTP). The No-Build scenario includes the 2003 roadway network with 2027 demographic and employment projections, while the Build scenario consists of the 2027 road network and 2027 land-use characteristics.

3. Off-model Projects analysis to account for the visions of the 2027 LRTP that could not be modeled in TransCAD. Transit and bicycle/pedestrian transportation projects were analyzed as off-model projects. Using information developed by the SMTC and its member agencies, SMTC calculated the reduction of VMT as a result of transit and bicycle and pedestrian system improvements envisioned in the LRTP. The off-model analysis also accounted for emissions reductions associated with the conversion of the Centro bus fleet from CNG to diesel-electric hybrids.

4. Regional Emissions Modeling. For this analysis the SMTC utilized emissions factors by road type and speed for Volatile Organic Compounds (VOC), Nitrogen Oxide (NOₓ) and CO for both the Build and No-Build scenarios. The SMTC then calculated the number of grams of each pollutant produced for each scenario.

5. Direct Energy Analysis. Direct energy represents the energy consumed by vehicles using a transportation facility (for this analysis, “facility” is defined as the roadway segments in SMTC’s regional travel demand model). Each scenario total VMT was multiplied by the percentage of each vehicle type to determine vehicle type VMT. That vehicle type VMT was then divided by the fuel economy rate to calculate the number of gallons of fuel used. These fuel consumption values were then converted to British Thermal Units (BTUs) by multiplying each gallon by 125,000. Finally, the total direct energy consumption (in BTUs) was summarized for all vehicles in either scenario.

6. Indirect Energy Analysis. Indirect energy represents the energy required to construct and maintain the transportation system. For this analysis, per EAB guidelines, only the energy used in construction activities for the identified Non-Exempt projects, including new construction, reconstruction, rehabilitation, and widening was analyzed. Certain non-exempt projects, such as ridesharing, include no energy-consuming construction or maintenance activities, and therefore, an indirect energy calculation is not applicable. However, one rehabilitation project, two road widening projects, and one new construction project from the LRTP 2007 Update were included in the indirect energy analysis.

7. CO₂ Emissions Estimates from Direct Energy Consumption. The guidance from EAB
provides Carbon Emission coefficients based on vehicle type. The Direct Energy consumed (by vehicle type) was multiplied by the Carbon Emission Coefficients for both gasoline and diesel engines and then by a factor representing the amount of carbon that is oxidized. This process created a value representing total tons of carbon dioxide emitted.

8. CO₂ Emissions Estimates from Indirect Energy Consumption. Similar to the step above, the indirect energy consumed was multiplied by the Carbon Emission Coefficients for diesel vehicles and then by a factor representing the amount of carbon that is oxidized. The results were the total tons of Carbon emitted.

9. Documented and presented the results of the analyses.

6. Analysis Summary

The results of the analysis indicate that the 2027 Build scenario, including the off-model transit, bicycle, and pedestrian improvements, will result in lower levels of pollutants and direct energy use as compared to the 2027 No-build scenario. In other words, the projects included in the 2007 LRTP will provide for a decrease in the emission of VOC, NOₓ, CO, and CO₂ and the amount of direct energy used by vehicles in the Syracuse MPA. The VOC, NOₓ, CO, and CO₂ emissions analysis and the energy analysis are summarized in Table 7-5.

Table 7-5

<table>
<thead>
<tr>
<th>Emissions and Energy Analysis Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>2027 No-Build</td>
</tr>
<tr>
<td>2027 Build (with off-model assumptions)</td>
</tr>
<tr>
<td>Change (Build - No Build)</td>
</tr>
<tr>
<td>Percent Change (Build - No Build)</td>
</tr>
</tbody>
</table>

* The intent of the indirect energy and greenhouse gas calculations was to measure the impact of the construction of the projects in the SMTC Long-Range Plan. The indirect energy used in the 2027 No-Build scenario is zero (as is the greenhouse gas emissions arising from the indirect energy used); therefore it is not possible to compute the percentage difference between the two scenarios.

Further details of the analysis steps utilized by SMTC staff and the results thereof are shown in Appendix E. This appendix details several important considerations relevant to both greenhouse gas and energy calculations.

E. Conclusions

The SMTC and its member agencies will continue to develop processes and tools to further monitor and improve our air quality for a variety of pollutants, while working towards enhanced energy savings and a more effective transportation system operation. In addition, the SMTC and its member agencies will continue to work closely with the New York State Department of Transportation Environmental Analysis Bureau to achieve the goals and objectives of the State Energy Plan. However, it is anticipated that significant additional resources and funding will be required to address this area. Metropolitan Planning Organizations (MPOs) generally do not have
the level of expertise and resources on hand that are now being required for increasingly more complex and integrated analysis in this subject area. In addition, the MPOs will require greater clarity and consistent detailed guidance, training and tools to allow for such analysis.